Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI.
نویسندگان
چکیده
A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously described 2D postprocessing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in five healthy volunteers, using 2D cine DENSE and historical 3D myocardial tagging as reference standards. With an average scan time of 20.5 ± 5.7 min, 3D data sets with a matrix size of 128 × 128 × 22, voxel size of 2.8 × 2.8 × 5.0 mm(3), and temporal resolution of 32 msec were obtained with displacement encoding in three orthogonal directions. Mean values for end-systolic mid-ventricular mid-wall radial, circumferential, and longitudinal strain were 0.33 ± 0.10, -0.17 ± 0.02, and -0.16 ± 0.02, respectively. Transmural strain gradients were detected in the radial and circumferential directions, reflecting high spatial resolution. Good agreement by linear correlation and Bland-Altman analysis was achieved when comparing normal strains measured by 2D and 3D cine DENSE. Also, the 3D strains, twist, and torsion results obtained by 3D cine DENSE were in good agreement with historical values measured by 3D myocardial tagging.
منابع مشابه
Quantifying right ventricular motion and strain using 3D cine DENSE MRI
Background The RV is difficult to image because of its thin wall, asymmetric geometry and complex motion. DENSE is a quantitative MRI technique for measuring myocardial displacement and strain at high spatial and temporal resolutions [1,2]. DENSE encodes tissue displacement directly into the image phase, allowing for the direct extraction of motion data at a pixel resolution. A free-breathing n...
متن کاملComprehensive assessment of myocardial mechanics in mice using 3D cine DENSE
Methods A multiphasic volumetric spiral cine DENSE sequence with 3D displacement encoding was implemented on a small-bore 7T MRI system (Clinscan, Bruker). Magnitude and phase images were reconstructed online, and semiautomatic segmentation methods followed by automatic strain, twist, and torsion calculations were implemented offline. Seven healthy C57Bl/6 mice were studied. For imaging, mice w...
متن کاملRoutine 3D SSFP cine imaging for improved analysis of myocardial volumetry and deformation
Background Conventional 2 dimensional (2D) cine MRI of myocardial motion is limited in its ability to describe the complex 3 dimensional (3D) motion of the heart due to sparse coverage and inconsistent breath-holding. So far, clinical feasibility of 3D cine imaging has been limited due to the long acquisition times and requirements for acceleration techniques that are not routinely available. W...
متن کاملAn interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance
BACKGROUND Advanced cardiovascular magnetic resonance (CMR) acquisitions often require long scan durations that necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced scan efficiency, particularly when the patient's breathing patterns are inconsistent, as is commonly seen in children. We hypothesized that engaging pediatric participants with a navigator-controlled...
متن کاملSingle breathhold three-dimensional cardiac cine MRI with whole ventricular coverage and retrospective cardiac gating using kat ARC
Background For quantitative volumetric assessments of cardiac function, 3D cine images depicting motion of the entire ventricle in a complete cardiac cycle are needed. However, due to limited acceleration capability, breathheld 3D cine MRI is not obtainable using conventional parallel imaging. Several kt-acceleration methods have demonstrated high-acceleration capability for dynamic MRI by expl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 64 4 شماره
صفحات -
تاریخ انتشار 2010